category-theory-presentation/categories.html

1120 lines
42 KiB
HTML
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<meta name="viewport" content="width=1024, user-scalable=no">
<title>Category Theory for Programming</title>
<!-- Required stylesheet -->
<link rel="stylesheet" href="core/deck.core.css">
<!-- Extension CSS files go here. Remove or add as needed. -->
<link rel="stylesheet" href="extensions/goto/deck.goto.css">
<link rel="stylesheet" href="extensions/menu/deck.menu.css">
<link rel="stylesheet" href="extensions/navigation/deck.navigation.css">
<link rel="stylesheet" href="extensions/status/deck.status.css">
<link rel="stylesheet" href="extensions/hash/deck.hash.css">
<!-- <link rel="stylesheet" href="extensions/scale/deck.scale.css"> -->
<!-- Transition theme. More available in /themes/transition/ or create your own. -->
<!-- <link rel="stylesheet" href="themes/transition/fade.css"> -->
<!-- Style theme. More available in /themes/style/ or create your own. -->
<!-- <link rel="stylesheet" href="themes/style/web-2.0.css"> -->
<link rel="stylesheet" href="themes/style/y/main.css" />
<link rel="stylesheet" href="themes/style/y/solarized.css" />
<!-- Required Modernizr file -->
<script src="modernizr.custom.js"></script>
<script>
function gofullscreen(){
var body=document.getElementById('body');
try {
body.requestFullScreen();
} catch(err) {
try {
body.webkitRequestFullScreen();
} catch(err) {
body.mozRequestFullScreen();
}
}
return false;
}
</script>
</head>
<body id="body" class="deck-container">
<div style="display:none">
\(\newcommand{\F}{\mathbf{F}}\)
\(\newcommand{\E}{\mathbf{E}}\)
\(\newcommand{\C}{\mathcal{C}}\)
\(\newcommand{\D}{\mathcal{D}}\)
\(\newcommand{\id}{\mathrm{id}}\)
\(\newcommand{\ob}[1]{\mathrm{ob}(#1)}\)
\(\newcommand{\hom}[1]{\mathrm{hom}(#1)}\)
\(\newcommand{\Set}{\mathbf{Set}}\)
\(\newcommand{\Mon}{\mathbf{Mon}}\)
\(\newcommand{\Vec}{\mathbf{Vec}}\)
\(\newcommand{\Grp}{\mathbf{Grp}}\)
\(\newcommand{\Rng}{\mathbf{Rng}}\)
\(\newcommand{\ML}{\mathbf{ML}}\)
\(\newcommand{\Hask}{\mathbf{Hask}}\)
\(\newcommand{\Cat}{\mathbf{Cat}}\)
\(\newcommand{\fmap}{\mathtt{fmap}}\)
</div>
<!-- Begin slides. Just make elements with a class of slide. -->
<section class="slide">
<div style="text-align:center; position:absolute; top: 2em; font-size: .9em; width: 100%">
<h1 style="position: relative;">Category Theory <span class="and">&amp;</span> Programming</h1>
<div><em class="base01">for</em> <a href="http://www.meetup.com/riviera-scala-clojure">Rivieria Scala Clojure</a> (Note this presentation uses Haskell)</div>
<author><em class="base01">by</em> <a href="http://yannesposito.com">Yann Esposito</a></author>
<div style="font-size:.8em">
<twitter>
<a href="http://twitter.com/yogsototh">@yogsototh</a>,
</twitter>
<googleplus>
<a href="https://plus.google.com/117858550730178181663">+yogsototh</a>
</googleplus>
</div>
<div class="base01" style="font-size: .5em; font-weight: 400; font-variant:italic">
<div class="button" style="margin: .5em auto;border: solid 2px; padding: 5px; width: 8em; border-radius: 1em; background:rgba(255,255,255,0.05);" onclick="javascript:gofullscreen();">ENTER FULLSCREEN</div>
HTML presentation: use arrows, space, swipe to navigate.
</div>
</div>
</section>
<section class="slide">
<h2>Plan</h2>
<ul style="font-size: 2em; font-weight:bold">
<li><span class="yellow">General overview</li>
<li>Definitions</li>
<li>Applications</li>
</ul>
</section>
<section class="slide">
<h2 id="not-really-about-cat-glory">Not really about: Cat <span class="and">&amp;</span> glory</h2>
<figure>
<img src="categories/img/categlory.jpg" alt="Cat n glory" /> <figcaption>credit to Tokuhiro Kawai (川井徳寛)</figcaption>
</figure>
</section>
<section class="slide">
<h2 id="general-overview">General Overview</h2>
<div style="float:right; width: 18%">
<img src="categories/img/eilenberg.gif" alt="Samuel Eilenberg"/> <img src="categories/img/maclaine.jpg" alt="Saunders Mac Lane"/>
</div>
<p><em>Recent Math Field</em><br />1942-45, Samuel Eilenberg <span class="and">&amp;</span> Saunders Mac Lane</p>
<p>Certainly one of the more abstract branches of math</p>
<ul>
<li><em>New math foundation</em><br /> formalism abstraction, package entire theory<sup></sup></li>
<li><em>Bridge between disciplines</em><br /> Physics, Quantum Physics, Topology, Logic, Computer Science<sup></sup></li>
</ul>
<p class="smaller base01" style="border-top: solid 1px">
★: <a href="http://www.math.harvard.edu/~mazur/preprints/when_is_one.pdf">When is one thing equal to some other thing?, Barry Mazur, 2007</a><br/> ☆: <a href="http://math.ucr.edu/home/baez/rosetta.pdf">Physics, Topology, Logic and Computation: A Rosetta Stone, John C. Baez, Mike Stay, 2009</a>
</p>
</section>
<section class="slide">
<h2 id="from-a-programmer-perspective">From a Programmer perspective</h2>
<blockquote>
<p>Category Theory is a new language/framework for Math</p>
</blockquote>
<ul>
<li>Another way of thinking</li>
<li>Extremely efficient for generalization</li>
</ul>
</section>
<section class="slide">
<h2 id="math-programming-relation">Math Programming relation</h2>
<img class="right" src="categories/img/buddha.gif" alt="Buddha Fractal"/>
<p>Programming <em><span class="yellow">is</span></em> doing Math</p>
<p>Strong relations between type theory and category theory.</p>
<p>Not convinced?<br />Certainly a <em>vocabulary</em> problem.</p>
<p>One of the goal of Category Theory is to create a <em>homogeneous vocabulary</em> between different disciplines.</p>
</section>
<section class="slide">
<h2 id="vocabulary">Vocabulary</h2>
<img class="right" src="categories/img/mindblown.gif" alt="mind blown"/>
<p>Math vocabulary used in this presentation:</p>
<blockquote>
<p>Category, Morphism, Associativity, Preorder, Functor, Endofunctor, Categorial property, Commutative diagram, Isomorph, Initial, Dual, Monoid, Natural transformation, Monad, Klesli arrows, κατα-morphism, ...</p>
</blockquote>
</section>
<section class="slide">
<h2 id="programmer-translation">Programmer Translation</h2>
<img class="right" src="categories/img/readingcat.jpg" alt="lolcat"/>
<table style="width:60%">
<tr><th>
Mathematician
</th><th>
Programmer
</th></tr>
<tr><td>
Morphism
</td><td>
Arrow
</td></tr>
<tr><td>
Monoid
</td><td>
String-like
</td></tr>
<tr><td>
Preorder
</td><td>
Acyclic graph
</td></tr>
<tr><td>
Isomorph
</td><td>
The same
</td></tr>
<tr><td>
Natural transformation
</td><td>
rearrangement function
</td></tr>
<tr><td>
Funny Category
</td><td>
LOLCat
</td></tr>
</table>
</section>
<section class="slide">
<h2>Plan</h2>
<ul style="font-size: 2em; font-weight: bold">
<li>General overview</li>
<li> <span class="yellow">Definitions</span>
<ul class="base01" style="border-left: 2px solid; padding-left: 1em; font-size: .6em; float: right; font-weight: bold; margin: 0 0 0 1em">
<li>Category</li>
<li>Intuition</li>
<li>Examples</li>
<li>Functor</li>
<li>Examples</li>
</ul>
</li>
<li>Applications</li>
</ul>
</section>
<section class="slide">
<h2>Category</h2>
<p>A way of representing <strong><em>things</em></strong> and <strong><em>ways to go between things</em></strong>.</p>
<p> A Category \(\mathcal{C}\) is defined by:</p>
<ul>
<li> <em>Objects <span class="yellow">\(\ob{C}\)</span></em>,</li>
<li> <em>Morphisms <span class="yellow">\(\hom{C}\)</span></em>,</li>
<li> a <em>Composition law <span class="yellow">(∘)</span></em></li>
<li> obeying some <em>Properties</em>.</li>
</ul>
</section>
<section class="slide">
<h2>Category: Objects</h2>
<img src="categories/img/mp/objects.png" alt="objects" />
<p>\(\ob{\mathcal{C}}\) is a collection</p>
</section>
<section class="slide">
<h2>Category: Morphisms</h2>
<img src="categories/img/mp/morphisms.png" alt="morphisms"/>
<p>\(A\) and \(B\) objects of \(\C\)<br/>
\(\hom{A,B}\) is a collection of morphisms<br/>
\(f:A→B\) denote the fact \(f\) belongs to \(\hom{A,B}\)</p>
<p>\(\hom{\C}\) the collection of all morphisms of \(\C\)</p>
</section>
<section class="slide">
<h2>Category: Composition</h2>
<p>Composition (∘): associate to each couple \(f:A→B, g:B→C\)
$$g∘f:A\rightarrow C$$
</p>
<img src="categories/img/mp/composition.png" alt="composition"/>
</section>
<section class="slide">
<h2>Category laws: neutral element</h2>
<p>for each object \(X\), there is an \(\id_X:X→X\),<br/>
such that for each \(f:A→B\):</p>
<img src="categories/img/mp/identity.png" alt="identity"/>
</section>
<section class="slide">
<h2>Category laws: Associativity</h2>
<p> Composition is associative:</p>
<img src="categories/img/mp/associativecomposition.png" alt="associative composition"/>
</section>
<section class="slide">
<h2>Commutative diagrams</h2>
<p>Two path with the same source and destination are equal.</p>
<figure class="left" style="max-width: 40%;margin-left: 10%;">
<img
src="categories/img/mp/commutative-diagram-assoc.png"
alt="Commutative Diagram (Associativity)"/>
<figcaption>
\((h∘g)∘f = h∘(g∘f) \)
</figcaption>
</figure>
<figure class="right" style="max-width:31%;margin-right: 10%;">
<img
src="categories/img/mp/commutative-diagram-id.png"
alt="Commutative Diagram (Identity law)"/>
<figcaption>
\(id_B∘f = f = f∘id_A \)
</figcaption>
</figure>
</section>
<section class="slide">
<h2>Question Time!</h2>
<figure style="width:70%; margin:0 auto">
<img src="categories/img/batquestion.jpg" width="100%"/>
<figcaption>
<em>- French-only joke -</em>
</figcaption>
</figure>
</section>
<section class="slide">
<h2>Can this be a category?</h2>
<p>\(\ob{\C},\hom{\C}\) fixed, is there a valid ∘?</p>
<figure class="left">
<img src="categories/img/mp/cat-example1.png" alt="Category example 1"/>
<figcaption class="slide">
<span class="green">YES</span>
</figcaption>
</figure>
<figure class="left">
<img src="categories/img/mp/cat-example2.png" alt="Category example 2"/>
<figcaption class="slide">
no candidate for \(g∘f\)
<br/><span class="red">NO</span>
</figcaption>
</figure>
<figure class="left">
<img src="categories/img/mp/cat-example3.png" alt="Category example 3"/>
<figcaption class="slide">
<span class="green">YES</span>
</figcaption>
</figure>
</section>
<section class="slide">
<h2>Can this be a category?</h2>
<figure class="left">
<img src="categories/img/mp/cat-example4.png" alt="Category example 4"/>
<figcaption class="slide">
no candidate for \(f:C→B\)
<br/><span class="red">NO</span>
</figcaption>
</figure>
<figure class="right" style="min-width: 59%">
<img src="categories/img/mp/cat-example5.png" alt="Category example 5"/>
<figcaption class="slide">
\((h∘g)∘f=\id_B∘f=f\)<br/>
\(h∘(g∘f)=h∘\id_A=h\)<br/>
but \(h≠f\)<br/>
<span class="red">NO</span>
</figcaption>
</figure>
</section>
<section class="slide">
<h2>Categories Examples</h2>
<figure style="width:70%; margin:0 auto">
<img src="categories/img/basket_of_cats.jpg" alt="Basket of cats"/>
<figcaption>
<em>- Basket of Cats -</em>
</figcaption>
</figure>
</section>
<section class="slide">
<h2>Category \(\Set\)</h2>
<ul>
<li> \(\ob{\Set}\) are <em>all</em> the sets</li>
<li> \(\hom{E,F}\) are <em>all</em> functions from \(E\) to \(F\)</li>
<li> ∘ is functions composition </li>
</ul>
<ul class="slide">
<li>\(\ob{\Set}\) is a proper class ; not a set</li>
<li>\(\hom{E,F}\) is a set</li>
<li>\(\Set\) is then a <em>locally <b>small</b> category</em></li>
</ul>
</section>
<section class="slide">
<h2>Categories Everywhere?</h2>
<img class="right" src="categories/img/cats-everywhere.jpg" alt="Cats everywhere"/>
<ul>
<li>\(\Mon\): (monoids, monoid morphisms,∘)</li>
<li>\(\Vec\): (Vectorial spaces, linear functions,∘)</li>
<li>\(\Grp\): (groups, group morphisms,∘)</li>
<li>\(\Rng\): (rings, ring morphisms,∘)</li>
<li>Any deductive system <i>T</i>: (theorems, proofs, proof concatenation)</li>
<li>\( \Hask\): (Haskell types, functions, <code>(.)</code> )</li>
<li>...</li>
</ul>
</section>
<section class="slide">
<h2>Smaller Examples</h2>
<h3>Strings</h3>
<img class="right" style="max-width:17%" src="categories/img/mp/strings.png" alt="Monoids are one object categories"/>
<ul>
<li> \(\ob{Str}\) is a singleton </li>
<li> \(\hom{Str}\) each string </li>
<li> ∘ is concatenation <code>(++)</code> </li>
</ul>
<ul>
<li> <code>"" ++ u = u = u ++ ""</code> </li>
<li> <code>(u ++ v) ++ w = u ++ (v ++ w)</code> </li>
</ul>
</section>
<section class="slide">
<h2>Finite Example?</h2>
<h3>Graph</h3>
<figure class="right" style="max-width:40%" >
<img src="categories/img/mp/graph-category.png" alt="Each graph is a category"/>
</figure>
<ul>
<li> \(\ob{G}\) are vertices</li>
<li> \(\hom{G}\) each path</li>
<li> ∘ is path concatenation</li>
</ul>
<ul><li>\(\ob{G}=\{X,Y,Z\}\),
</li><li>\(\hom{G}=\{ε,α,β,γ,αβ,βγ,...\}\)
</li><li>\(αβ∘γ=αβγ\)
</li></ul>
</section>
<section class="slide">
<h2>Number construction</h2>
<h3>Each Numbers as a whole category</h3>
<img src="categories/img/mp/numbers.png" alt="Each number as a category"/>
</section>
<section class="slide">
<h2>Degenerated Categories: Monoids</h2>
<img class="right" style="max-width:17%" src="categories/img/mp/monoid.png" alt="Monoids are one object categories"/>
<p>Each Monoid \((M,e,⊙): \ob{M}=\{∙\},\hom{M}=M,\circ = ⊙\)</p>
<p class="yellow">Only one object.</p>
<p>Examples:</p>
<ul><li><code>(Integer,0,+)</code>, <code>(Integer,1,*)</code>,
</li><li><code>(Strings,"",++)</code>, for each <code>a</code>, <code>([a],[],++)</code>
</li></ul>
</section>
<section class="slide">
<h2>Degenerated Categories: Preorders \((P,≤)\)</h2>
<ul><li>\(\ob{P}={P}\),
</li><li>\(\hom{x,y}=\{x≤y\} ⇔ x≤y\),
</li><li>\((y≤z) \circ (x≤y) = (x≤z) \)
</li></ul>
<p><em class="yellow">At most one morphism between two objects.</em></p>
<img src="categories/img/mp/preorder.png" alt="preorder category"/>
</section>
<section class="slide">
<h2>Degenerated Categories: Discrete Categories</h2>
<img class="right" src="categories/img/mp/set.png" alt="Any set can be a category"/>
<h3>Any Set</h3>
<p>Any set \(E: \ob{E}=E, \hom{x,y}=\{x\} ⇔ x=y \)</p>
<p class="yellow">Only identities</p>
</section>
<section class="slide">
<h2 id="choice">Choice</h2>
<p>The same object can be seen in many different way as a category.</p>
<p>You can choose what are object, morphisms and composition.</p>
<p>ex: <strong>Str</strong> and discrete(Σ<sup>*</sup>)</p>
</section>
<section class="slide">
<h2 class="base1">Categorical Properties</h2>
<p class="base1">Any property which can be expressed in term of category, objects, morphism and composition.</p>
<ul><li> <em class="yellow">Dual</em>: \(\D\) is \(\C\) with reversed morphisms.
</li><li> <em class="yellow">Initial</em>: \(Z\in\ob{\C}\) s.t. \(∀Y∈\ob{\C}, \#\hom{Z,Y}=1\)
<br/> Unique ("up to isormophism")
</li><li> <em class="yellow">Terminal</em>: \(T\in\ob{\C}\) s.t. \(T\) is initial in the dual of \(\C\)
</li><li> <em class="yellow">Functor</em>: structure preserving mapping between categories
</li><li> ...
</li></ul>
</section>
<section class="slide">
<h2 id="isomorph">Isomorph</h2>
<p><img class="right" alt="isomorph cats" src="categories/img/isomorph-cats.jpg" /> <em class="yellow">isomorphism</em>: \(f:A→B\) which can be &quot;undone&quot; <em>i.e.</em><br />\(∃g:B→A\), \(g∘f=id_A\) <span class="and">&amp;</span> \(f∘g=id_B\)<br />in this case, \(A\) <span class="and">&amp;</span> \(B\) are <em class="yellow">isomorphic</em>.</p>
<p><span class="yellow">A≌B</span> means A and B are essentially the same.<br />In Category Theory, <span class="yellow">=</span> is in fact mostly <span class="yellow"></span>.<br />For example in commutative diagrams.</p>
</section>
<section class="slide">
<h2>Functor</h2>
<p> A functor is a mapping between two categories.
Let \(\C\) and \(\D\) be two categories.
A <em>functor</em> <span class="yellow">\(\F\)</span> from <span class="blue">\(\C\)</span> to <span class="green">\(\D\)</span>:</p>
<ul>
<li> Associate objects: <span class="backblue">\(A\in\ob{\C}\)</span> to <span class="backgreen">\(\F(A)\in\ob{\D}\)</span> </li>
<li> Associate morphisms: <span class="backblue">\(f:A\to B\)</span> to <span class="backgreen">\(\F(f) : \F(A) \to \F(B)\)</span>
such that
<ul>
<li>\( \F (\)<span class="backblue blue">\(\id_X\)</span>\()= \)<span class="backgreen"><span class="green">\(\id\)</span>\(\vphantom{\id}_{\F(}\)<span class="blue">\(\vphantom{\id}_X\)</span>\(\vphantom{\id}_{)} \)</span>,</li>
<li>\( \F (\)<span class="backblue blue">\(g∘f\)</span>\()= \)<span class="backgreen">\( \F(\)<span class="blue">\(g\)</span>\() \)<span class="green">\(\circ\)</span>\( \F(\)<span class="blue">\(f\)</span>\() \)</span></li>
</ul>
</li>
</ul>
</section>
<section class="slide">
<h2>Functor Example (ob → ob)</h2>
<img width="65%" src="categories/img/mp/functor.png" alt="Functor"/>
</section>
<section class="slide">
<h2>Functor Example (hom → hom)</h2>
<img width="65%" src="categories/img/mp/functor-morphism.png" alt="Functor"/>
</section>
<section class="slide">
<h2>Functor Example</h2>
<img width="65%" src="categories/img/mp/functor-morphism-color.png" alt="Functor"/>
</section>
<section class="slide">
<h2>Endofunctors</h2>
<p>An <em>endofunctor</em> for \(\C\) is a functor \(F:\C→\C\).</p>
<img width="75%" src="categories/img/mp/endofunctor.png" alt="Endofunctor"/>
</section>
<section class="slide">
<h2>Category of Categories</h2>
<img style="min-width:43%; width: 43%" class="right" src="categories/img/fractalcat.jpg" />
<p>Categories and functors form a category: \(\Cat\)</p>
<ul><li>\(\ob{\Cat}\) are categories
</li><li>\(\hom{\Cat}\) are functors
</li><li>∘ is functor composition
</li></ul>
</section>
<section class="slide">
<h2>Plan</h2>
<ul style="font-size: 2em; font-weight:bold">
<li>General overview</li>
<li>Definitions</li>
<li><span class="yellow">Applications
<ul class="base01" style="border-left: 2px solid; padding-left: 1em; font-size: .6em; float: right; font-weight: bold; margin: -4em 0 0 1em">
<li>\(\Hask\) category
</li><li> Functors
</li><li> Natural transformations
</li><li> Monads
</li><li> κατα-morphisms
</li></ul>
</li>
</ul>
</section>
<section class="slide">
<h2>Hask</h2>
<p>Category \(\Hask\):</p>
<img class="right" style="max-width:30%" src="categories/img/mp/hask.png" alt="Haskell Category Representation"/>
<ul><li>
\(\ob{\Hask} = \) Haskell types
</li><li>
\(\hom{\Hask} = \) Haskell functions
</li><li>
∘ = <code>(.)</code> Haskell function composition
</li></ul>
<p>Forget glitches because of <code>undefined</code>.</p>
</section>
<section class="slide">
<h2 id="haskell-kinds">Haskell Kinds</h2>
<p>In Haskell some types can take type variable(s). Typically: <code>[a]</code>.</p>
<p>Types have <em>kinds</em>; The kind is to type what type is to function. Kind are the types for types (so meta).</p>
<pre><code>Int, Char :: *
[], Maybe :: * -&gt; *
(,), (-&gt;) :: * -&gt; * -&gt; *
[Int], Maybe Char, Maybe [Int] :: *</code></pre>
</section>
<section class="slide">
<h2 id="haskell-types">Haskell Types</h2>
<p>Sometimes, the type determine a lot about the function<sup></sup>:</p>
<pre class="haskell"><code>fst :: (a,b) -> a -- Only one choice
snd :: (a,b) -> b -- Only one choice
f :: a -> [a] -- Many choices
-- Possibilities: f x=[], or [x], or [x,x] or [x,...,x]
? :: [a] -> [a] -- Many choices
-- can only rearrange: duplicate/remove/reorder elements
-- for example: the type of addOne isn't [a] -> [a]
addOne l = map <span class="red">(+1)</span> l
-- The (+1) force 'a' to be a Num.</code></pre>
<p>
<p><span class="small base01">★:<a href="http://ttic.uchicago.edu/~dreyer/course/papers/wadler.pdf">Theorems for free!, Philip Wadler, 1989</a></span></p>
</section>
<section class="slide">
<h2>Haskell Functor vs \(\Hask\) Functor</h2>
<p>A Haskell Functor is a type <code>F :: * -> *</code> which belong to the type class <code>Functor</code> ; thus instantiate
<code>fmap :: (a -> b) -> (F a -> F b)</code>.
<p><span style="visibility:hidden"><span class="and">&amp;</span></span> <code>F</code>: \(\ob{\Hask}→\ob{\Hask}\)<br/> <span class="and">&amp;</span> <code>fmap</code>: \(\hom{\Hask}→\hom{\Hask}\)
<p>The couple <code>(F,fmap)</code> is a \(\Hask\)'s functor if for any <code>x :: F a</code>:</p>
<ul><li><code>fmap id x = x</code>
</li><li><code>fmap (f.g) x= (fmap f . fmap g) x</code>
</li></ul>
</section>
<section class="slide">
<h2>Haskell Functors Example: Maybe</h2>
<pre class="haskell"><code>data Maybe a = Just a | Nothing
instance Functor Maybe where
fmap :: (a -> b) -> (Maybe a -> Maybe b)
fmap f (Just a) = Just (f a)
fmap f Nothing = Nothing</code></pre>
<pre class="haskell"><code>fmap (+1) (Just 1) == Just 2
fmap (+1) Nothing == Nothing
fmap head (Just [1,2,3]) == Just 1</code></pre>
</section>
<section class="slide">
<h2>Haskell Functors Example: List</h2>
<pre class="haskell"><code>instance Functor ([]) where
fmap :: (a -> b) -> [a] -> [b]
fmap = map</pre></code>
<pre class="haskell"><code>fmap (+1) [1,2,3] == [2,3,4]
fmap (+1) [] == []
fmap head [[1,2,3],[4,5,6]] == [1,4]</code></pre>
</section>
<section class="slide">
<h2 id="haskell-functors-for-the-programmer">Haskell Functors for the programmer</h2>
<p><code>Functor</code> is a type class used for types that can be mapped over.</p>
<ul>
<li>Containers: <code>[]</code>, Trees, Map, HashMap...</li>
<li>&quot;Feature Type&quot;:
<ul>
<li><code>Maybe a</code>: help to handle absence of <code>a</code>.<br />Ex: <code>safeDiv x 0 ⇒ Nothing</code></li>
<li><code>Either String a</code>: help to handle errors<br />Ex: <code>reportDiv x 0 ⇒ Left &quot;Division by 0!&quot;</code></li>
</ul></li>
</ul>
</section>
<section class="slide">
<h2>Haskell Functor intuition</h2>
<p>Put normal function inside a container. Ex: list, trees...<p>
<img width="70%" src="categories/img/mp/boxfunctor.png" alt="Haskell Functor as a box play"/>
</section>
<section class="slide">
<h2>Haskell Functor properties</h2>
<p>Haskell Functors are:</p>
<ul><li><em>endofunctors</em> ; \(F:\C→\C\) here \(\C = \Hask\),
</li><li>a couple <b>(Object,Morphism)</b> in \(\Hask\).
</li></ul>
</section>
<section class="slide">
<h2>Functor as boxes</h2>
<p>Haskell functor can be seen as boxes containing all Haskell types and functions.
Haskell types is fractal:</p>
<img width="70%" src="categories/img/mp/hask-endofunctor.png" alt="Haskell functor representation"/>
</section>
<section class="slide">
<h2>Functor as boxes</h2>
<p>Haskell functor can be seen as boxes containing all Haskell types and functions.
Haskell types is fractal:</p>
<img width="70%" src="categories/img/mp/hask-endofunctor-objects.png" alt="Haskell functor representation"/>
</section>
<section class="slide">
<h2>Functor as boxes</h2>
<p>Haskell functor can be seen as boxes containing all Haskell types and functions.
Haskell types is fractal:</p>
<img width="70%" src="categories/img/mp/hask-endofunctor-morphisms.png" alt="Haskell functor representation"/>
</section>
<section class="slide">
<h2 id="non-haskell-hasks-functors">&quot;Non Haskell&quot; Hask's Functors</h2>
<p>A simple basic example is the \(id_\Hask\) functor. It simply cannot be expressed as a couple (<code>F</code>,<code>fmap</code>) where</p>
<ul>
<li><code>F::* -&gt; *</code></li>
<li><code>fmap :: (a -&gt; b) -&gt; (F a) -&gt; (F b)</code></li>
</ul>
<p>Another example:</p>
<ul>
<li>F(<code>T</code>)=<code>Int</code></li>
<li>F(<code>f</code>)=<code>\_-&gt;0</code></li>
</ul>
</section>
<section class="slide">
<h2 id="also-functor-inside-hask">Also Functor inside \(\Hask\)</h2>
<p>\(\mathtt{[a]}∈\ob{\Hask}\)</code> but is also a category. Idem for <code>Int</code>.</p>
<p><code>length</code> is a Functor from the category <code>[a]</code> to the category <code>Int</code>:</p>
<ul class="left" style="max-width:40%">
<li>\(\ob{\mathtt{[a]}}=\{∙\}\)</li>
<li>\(\hom{\mathtt{[a]}}=\mathtt{[a]}\)</li>
<li>\(∘=\mathtt{(++)}\)</li>
</ul>
<p class="left" style="margin:2em 3em"></p>
<ul class="left" style="max-width:40%">
<li>\(\ob{\mathtt{Int}}=\{∙\}\)</li>
<li>\(\hom{\mathtt{Int}}=\mathtt{Int}\)</li>
<li>\(∘=\mathtt{(+)}\)</li>
</ul>
<div class="flush"></div>
<ul><li>id: <code>length [] = 0</code>
</li><li>comp: <code>length (l ++ l') = (length l) + (length l')</code>
</li></ul>
</section>
<section class="slide">
<h2 id="category-of-hask-endofunctors">Category of \(\Hask\) Endofunctors</h2>
<img width="60%" src="categories/img/mp/cat-hask-endofunctor.png" alt="Category of Hask endofunctors" />
</section>
<section class="slide">
<h2 id="category-of-functors">Category of Functors</h2>
<p>If \(\C\) is <em>small</em> (\(\hom{\C}\) is a set). All functors from \(\C\) to some category \(\D\) form the category \(\mathrm{Func}(\C,\D)\).</p>
<ul>
<li>\(\ob{\mathrm{Func}(\C,\D)}\): Functors \(F:\C→\D\)</li>
<li>\(\hom{\mathrm{Func}(\C,\D)}\): <em>natural transformations</em></li>
<li>∘: Functor composition</li>
</ul>
<p>\(\mathrm{Func}(\C,\C)\) is the category of endofunctors of \(\C\).</p>
</section>
<section class="slide">
<h2 id="natural-transformations">Natural Transformations</h2>
<p>Let \(F\) and \(G\) be two functors from \(\C\) to \(\D\).</p>
<p><img src="categories/img/mp/natural-transformation.png" alt="Natural transformation commutative diagram" class="right"/> <em>A natural transformation:</em> familly η ; \(η_X\in\hom{\D}\) for \(X\in\ob{\C}\) s.t.</p>
<p>ex: between Haskell functors; <code>F a -&gt; G a</code><br />Rearragement functions only.</p>
</section>
<section class="slide">
<h2 id="natural-transformation-examples-14">Natural Transformation Examples (1/4)</h2>
<pre><code class="haskell small">data List a = Nil | Cons a (List a)
toList :: [a] -> List a
toList [] = Nil
toList (x:xs) = Cons x (toList xs)</pre>
</code>
<p><code>toList</code> is a natural transformation. It is also a morphism from <code>[]</code> to <code>List</code> in the Category of \(\Hask\) endofunctors.</p>
<img style="float:left;width:30%" src="categories/img/mp/nattrans-list-tree.png" alt="natural transformation commutative diagram"/>
<figure style="float:right;width:60%">
<img style="width:40%" src="categories/img/mp/list-tree-endofunctor-morphism.png" alt="natural transformation commutative diagram"/>
</figure>
</section>
<section class="slide">
<h2 id="natural-transformation-examples-24">Natural Transformation Examples (2/4)</h2>
<pre><code class="haskell small">data List a = Nil | Cons a (List a)
toHList :: List a -> [a]
toHList Nil = []
toHList (Cons x xs) = x:toHList xs</pre>
</code>
<p><code>toHList</code> is a natural transformation. It is also a morphism from <code>List</code> to <code>[]</code> in the Category of \(\Hask\) endofunctors.</p>
<img style="float:left;width:30%" src="categories/img/mp/nattrans-tree-list.png" alt="natural transformation commutative diagram"/>
<figure style="float:right;width:60%">
<img style="width:40%" src="categories/img/mp/tree-list-endofunctor-morphism.png" alt="natural transformation commutative diagram"/> <figcaption><code>toList . toHList = id</code> <span class="and">&amp;</span> <code>toHList . toList = id</code> <span style="visibility:hidden"><span class="and">&amp;</span></span><br/> therefore <code>[]</code> <span class="and">&amp;</span> <code>List</code> are <span class="orange">isomorph</span>. </figcaption>
</figure>
</section>
<section class="slide">
<h2 id="natural-transformation-examples-34">Natural Transformation Examples (3/4)</h2>
<pre><code class="haskell small">toMaybe :: [a] -> Maybe a
toMaybe [] = Nothing
toMaybe (x:xs) = Just x</pre>
</code>
<p><code>toMaybe</code> is a natural transformation. It is also a morphism from <code>[]</code> to <code>Maybe</code> in the Category of \(\Hask\) endofunctors.</p>
<img style="float:left;width:30%" src="categories/img/mp/nattrans-list-maybe.png" alt="natural transformation commutative diagram"/>
<figure style="float:right;width:60%">
<img style="width:40%" src="categories/img/mp/list-maybe-endofunctor-morphism.png" alt="natural transformation commutative diagram"/>
</figure>
</section>
<section class="slide">
<h2 id="natural-transformation-examples-44">Natural Transformation Examples (4/4)</h2>
<pre><code class="haskell small">mToList :: Maybe a -> [a]
mToList Nothing = []
mToList Just x = [x]</pre>
</code>
<p><code>toMaybe</code> is a natural transformation. It is also a morphism from <code>[]</code> to <code>Maybe</code> in the Category of \(\Hask\) endofunctors.</p>
<img style="float:left;width:30%" src="categories/img/mp/nattrans-maybe-list.png" alt="natural transformation commutative diagram"/>
<figure style="float:right;width:60%">
<img style="width:40%" src="categories/img/mp/maybe-list-endofunctor-morphsm.png" alt="relation between [] and Maybe"/> <figcaption>There is <span class="red">no isomorphism</span>.<br/> Hint: <code>Bool</code> lists longer than 1. </figcaption>
</figure>
</section>
<section class="slide">
<h2 id="composition-problem">Composition problem</h2>
<p>The Problem; example with lists:</p>
<pre class="haskell"><code>f x = [x] ⇒ f 1 = [1] ⇒ (f.f) 1 = [[1]] ✗
g x = [x+1] ⇒ g 1 = [2] ⇒ (g.g) 1 = ERROR [2]+1 ✗
h x = [x+1,x*3] ⇒ h 1 = [2,3] ⇒ (h.h) 1 = ERROR [2,3]+1 ✗ </code></pre>
<p>The same problem with most <code>f :: a -&gt; F a</code> functions and functor <code>F</code>.</p>
</section>
<section class="slide">
<h2 id="composition-fixable">Composition Fixable?</h2>
<p>How to fix that? We want to construct an operator which is able to compose:</p>
<p><code>f :: a -&gt; F b</code> <span class="and">&amp;</span> <code>g :: b -&gt; F c</code>.</p>
<p>More specifically we want to create an operator ◎ of type</p>
<p><code>◎ :: (b -&gt; F c) -&gt; (a -&gt; F b) -&gt; (a -&gt; F c)</code></p>
<p>Note: if <code>F</code> = I, ◎ = <code>(.)</code>.</p>
</section>
<section class="slide">
<h2 id="fix-composition-12">Fix Composition (1/2)</h2>
<p>Goal, find: <code>◎ :: (b -&gt; F c) -&gt; (a -&gt; F b) -&gt; (a -&gt; F c)</code><br /><code>f :: a -&gt; F b</code>, <code>g :: b -&gt; F c</code>:</p>
<ul>
<li><code>(g ◎ f) x</code> ???</li>
<li>First apply <code>f</code> to <code>x</code><code>f x :: F b</code></li>
<li>Then how to apply <code>g</code> properly to an element of type <code>F b</code>?</li>
</ul>
</section>
<section class="slide">
<h2 id="fix-composition-22">Fix Composition (2/2)</h2>
<p>Goal, find: <code>◎ :: (b -&gt; F c) -&gt; (a -&gt; F b) -&gt; (a -&gt; F c)</code><br /><code>f :: a -&gt; F b</code>, <code>g :: b -&gt; F c</code>, <span class="yellow"><code>f x :: F b</code></span>:</p>
<ul>
<li>Use <code>fmap :: (t -&gt; u) -&gt; (F t -&gt; F u)</code>!</li>
<li><code>(fmap g) :: F b -&gt; F (F c)</code> ; (<code>t=b</code>, <code>u=F c</code>)</li>
<li><code>(fmap g) (f x) :: F (F c)</code> it almost WORKS!</li>
<li>We lack an important component, <code>join :: F (F c) -&gt; F c</code></li>
<li><code>(g ◎ f) x = join ((fmap g) (f x))</code><br />◎ is the Kleisli composition; in Haskell: <code>&lt;=&lt;</code> (in <code>Control.Monad</code>).</li>
</ul>
</section>
<section class="slide">
<h2 id="necessary-laws">Necessary laws</h2>
<p>For ◎ to work like composition, we need join to hold the following properties:</p>
<ul>
<li><code>join (join (F (F (F a))))=join (F (join (F (F a))))</code></li>
<li>abusing notations denoting <code>join</code> by ⊙; this is equivalent to<br /><span class="yellow"><code>(F ⊙ F) ⊙ F = F ⊙ (F ⊙ F)</code></span></li>
<li>There exists <code>η :: a -&gt; F a</code> s.t.<br /><span class="yellow"><code>η⊙F=F=F⊙η</code></span></li>
</ul>
</section>
<section class="slide">
<h2 id="klesli-composition">Klesli composition</h2>
<p>Now the composition works as expected. In Haskell ◎ is <code>&lt;=&lt;</code> in <code>Control.Monad</code>.</p>
<p><code>g &lt;=&lt; f = \x -&gt; join ((fmap g) (f x))</code></p>
<pre class="haskell"><code>f x = [x] ⇒ f 1 = [1] ⇒ (f <=< f) 1 = [1]
g x = [x+1] g 1 = [2] (g <=< g) 1 = [3]
h x = [x+1,x*3] h 1 = [2,3] (h <=< h) 1 = [3,6,4,9] </code></pre>
</section>
<section class="slide">
<h2 id="we-reinvented-monads">We reinvented Monads!</h2>
<p>A monad is a triplet <code>(M,⊙,η)</code> where</p>
<ul>
<li>\(M\) an <span class="yellow">Endofunctor</span> (to type <code>a</code> associate <code>M a</code>)</li>
<li>\(⊙:M×M→M\) a <span class="yellow">nat. trans.</span> (i.e. <code>⊙::M (M a) → M a</code> ; <code>join</code>)</li>
<li>\(η:I→M\) a <span class="yellow">nat. trans.</span> (\(I\) identity functor ; <code>η::a → M a</code>)</li>
</ul>
<p>Satisfying</p>
<ul>
<li>\(M ⊙ (M ⊙ M) = (M ⊙ M) ⊙ M\)</li>
<li>\(η ⊙ M = M = M ⊙ η\)</li>
</ul>
</section>
<section class="slide">
<h2 id="compare-with-monoid">Compare with Monoid</h2>
<p>A Monoid is a triplet \((E,∙,e)\) s.t.</p>
<ul>
<li>\(E\) a set</li>
<li>\(∙:E×E→E\)</li>
<li>\(e:1→E\)</li>
</ul>
<p>Satisfying</p>
<ul>
<li>\(x∙(y∙z) = (x∙y)∙z, ∀x,y,z∈E\)</li>
<li>\(e∙x = x = x∙e, ∀x∈E\)</li>
</ul>
</section>
<section class="slide">
<h2 id="monads-are-just-monoids">Monads are just Monoids</h2>
<blockquote>
<p>A Monad is just a monoid in the category of endofunctors, what's the problem?</p>
</blockquote>
<p>The real sentence was:</p>
<blockquote>
<p>All told, a monad in X is just a monoid in the category of endofunctors of X, with product × replaced by composition of endofunctors and unit set by the identity endofunctor.</p>
</blockquote>
</section>
<section class="slide">
<h2 id="example-list">Example: List</h2>
<ul>
<li><code>[] :: * -&gt; *</code> an <span class="yellow">Endofunctor</span></li>
<li>\(⊙:M×M→M\) a nat. trans. (<code>join :: M (M a) -&gt; M a</code>)</li>
<li>\(η:I→M\) a nat. trans.</li>
</ul>
<pre class="haskell"><code>-- In Haskell ⊙ is "join" in "Control.Monad"
join :: [[a]] -> [a]
join = concat
-- In Haskell the "return" function (unfortunate name)
η :: a -> [a]
η x = [x]</code></pre>
</section>
<section class="slide">
<h2 id="example-list-law-verification">Example: List (law verification)</h2>
<p>Example: <code>List</code> is a functor (<code>join</code> is ⊙)</p>
<ul>
<li>\(M ⊙ (M ⊙ M) = (M ⊙ M) ⊙ M\)</li>
<li>\(η ⊙ M = M = M ⊙ η\)</li>
</ul>
<pre class="nohighlight small"><code>join [ join [[x,y,...,z]] ] = join [[x,y,...,z]]
= join (join [[[x,y,...,z]]])
join (η [x]) = [x] = join [η x]</code></pre>
<p>Therefore <code>([],join,η)</code> is a monad.</p>
</section>
<section class="slide">
<h2 id="monads-utility">Monads useful?</h2>
<p>A <em>LOT</em> of monad tutorial on the net. Just one example; the State Monad</p>
<p><code>DrawScene</code> to <code><span class="yellow">State Screen</span> DrawScene</code> ; still <b>pure</b>.</p>
<pre class="haskell left smaller" style="width:40%"><code>main = drawImage (width,height)
drawImage :: Screen -&gt; DrawScene
drawImage <span class="orange">screen</span> = do
drawPoint p <span class="orange">screen</span>
drawCircle c <span class="orange">screen</span>
drawRectangle r <span class="orange">screen</span>
drawPoint point <span class="orange">screen</span> = ...
drawCircle circle <span class="orange">screen</span> = ...
drawRectangle rectangle <span class="orange">screen</span> = ...</code></pre>
<pre class="haskell right smaller" style="width:45%"><code>main = do
<span class="orange">put (Screen 1024 768)</span>
drawImage
drawImage :: State Screen DrawScene
drawImage = do
drawPoint p
drawCircle c
drawRectangle r
drawPoint :: Point -&gt; State Screen DrawScene
drawPoint p = do
<span class="orange">Screen width height &lt;- get</span>
...</code></pre>
</section>
<section class="slide">
<h2 id="fold"><code>fold</code></h2>
<img src="categories/img/tower_folded.gif" alt="fold" style="width:50%;max-width:50%"/>
</section>
<section class="slide">
<h2 id="κατα-morphism">κατα-morphism</h2>
<img src="categories/img/earth_catamorphed.gif" alt="catamorphism" style="width:90%;max-width:90%"/>
</section>
<section class="slide">
<h2 id="κατα-morphism-fold-generalization">κατα-morphism: fold generalization</h2>
<p><code>acc</code> type of the &quot;accumulator&quot;:<br /><code>fold :: (acc -&gt; a -&gt; acc) -&gt; acc -&gt; [a] -&gt; acc</code></p>
<p>Idea: put the accumulated value inside the type.</p>
<pre class="haskell"><code>-- Equivalent to fold (+1) 0 "cata"
(Cons 'c' (Cons 'a' (Cons 't' (Cons 'a' Nil))))
(Cons 'c' (Cons 'a' (Cons 't' (Cons 'a' <span style="border: solid 1px;">0</span>))))
(Cons 'c' (Cons 'a' (Cons 't' <span style="border: solid 1px;">1</span>)))
(Cons 'c' (Cons 'a' <span style="border: solid 1px;">2</span>))
(Cons 'c' <span style="border: solid 1px;">3</span>)
<span style="border: solid 1px;">4</span></code></pre>
<p>But where are all the informations? <code>(+1)</code> and <code>0</code>?</p>
</section>
<section class="slide">
<h2 id="κατα-morphism-missing-information">κατα-morphism: Missing Information</h2>
<p>Where is the missing information?</p>
<ul>
<li>Functor operator <code>fmap</code></li>
<li>Algebra representing the <code>(+1)</code> and also knowing about the <code>0</code>.</li>
</ul>
<p>First example, make <code>length</code> on <code>[Char]</code></p>
</section>
<section class="slide">
<h2 id="κατα-morphism-type-work">κατα-morphism: Type work</h2>
<pre class="haskell"><code>
data StrF a = Cons Char a | Nil
data Str' = StrF Str'
-- generalize the construction of Str to other datatype
-- Mu: type fixed point
-- Mu :: (* -> *) -> *
data Mu f = InF { outF :: f (Mu f) }
data Str = Mu StrF
-- Example
foo=InF { outF = Cons 'f'
(InF { outF = Cons 'o'
(InF { outF = Cons 'o'
(InF { outF = Nil })})})}</code></pre>
</section>
<section class="slide">
<h2 id="κατα-morphism-missing-information-retrieved">κατα-morphism: missing information retrieved</h2>
<pre class="haskell"><code>type Algebra f a = f a -> a
instance Functor (StrF a) =
fmap f (Cons c x) = Cons c (f x)
fmap _ Nil = Nil</code></pre>
<pre class="haskell"><code>cata :: Functor f => Algebra f a -> Mu f -> a
cata f = f . fmap (cata f) . outF</code></pre>
</section>
<section class="slide">
<h2 id="κατα-morphism-finally-length">κατα-morphism: Finally length</h2>
<p>All needed information for making length.</p>
<pre><code>instance Functor (StrF a) =
fmap f (Cons c x) = Cons c (f x)
fmap _ Nil = Nil
length&#39; :: Str -&gt; Int
length&#39; = cata phi where
phi :: Algebra StrF Int -- StrF Int -&gt; Int
phi (Cons a b) = 1 + b
phi Nil = 0
main = do
l &lt;- length&#39; $ stringToStr &quot;Toto&quot;
...</code></pre>
</section>
<section class="slide">
<h2 id="κατα-morphism-extension-to-trees">κατα-morphism: extension to Trees</h2>
<p>Once you get the trick, it is easy to extent to most Functor.</p>
<pre><code>type Tree = Mu TreeF
data TreeF x = Node Int [x]
instance Functor TreeF where
fmap f (Node e xs) = Node e (fmap f xs)
depth = cata phi where
phi :: Algebra TreeF Int -- TreeF Int -&gt; Int
phi (Node x sons) = 1 + foldr max 0 sons</code></pre>
</section>
<section class="slide">
<h2 id="conclusion">Conclusion</h2>
<p>Category Theory oriented Programming:</p>
<ul>
<li>Focus on the type and operators</li>
<li>Extreme generalisation</li>
<li>Better modularity</li>
<li>Better control through properties of types</li>
</ul>
<p><span class="smaller">No cat were harmed in the making of this presentation.</span></p>
</section>
<!-- End slides. -->
<!-- Begin extension snippets. Add or remove as needed. -->
<!-- deck.navigation snippet -->
<a href="#" class="deck-prev-link" title="Previous">&#8592;</a>
<a href="#" class="deck-next-link" title="Next">&#8594;</a>
<!-- deck.status snippet -->
<p class="deck-status">
<span class="deck-status-current"></span>
/
<span class="deck-status-total"></span>
</p>
<!-- deck.goto snippet -->
<form action="." method="get" class="goto-form">
<label for="goto-slide">Go to slide:</label>
<input type="text" name="slidenum" id="goto-slide" list="goto-datalist">
<datalist id="goto-datalist"></datalist>
<input type="submit" value="Go">
</form>
<!-- deck.hash snippet -->
<a href="." title="Permalink to this slide" class="deck-permalink">#</a>
<!-- End extension snippets. -->
<!-- Required JS files. -->
<script src="jquery-1.7.2.min.js"></script>
<script src="core/deck.core.js"></script>
<!-- Extension JS files. Add or remove as needed. -->
<script src="core/deck.core.js"></script>
<script src="extensions/hash/deck.hash.js"></script>
<script src="extensions/menu/deck.menu.js"></script>
<script src="extensions/goto/deck.goto.js"></script>
<script src="extensions/status/deck.status.js"></script>
<script src="extensions/navigation/deck.navigation.js"></script>
<!-- <script src="extensions/scale/deck.scale.js"></script> -->
<!-- Initialize the deck. You can put this in an external file if desired. -->
<script>
$(function() {
$.deck('.slide');
});
</script>
<!-- Y theme -->
<script type="text/javascript" src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
<script src="js/highlight/highlight.pack.js"></script>
<script>
hljs.initHighlightingOnLoad();
</script>
<script>
// --- Google analytics ---
function analytics() {
// add an event to all link for google analytics
$('a').click(function () {
// tell analytics to save event
try {
var identifier=$(this).attr('id') ;
var href=$(this).attr('href')
var label="";
if ( typeof( identifier ) != 'undefined' ) {
label=label+'[id]:'+identifier
category='JSLink'
}
if ( typeof( href ) != 'undefined' ) {
label=label+' [href]:'+href
if ( href[0] == '#' ) {
category='Anchor';
} else {
category='Link';
}
}
_gaq.push(['_trackEvent', category, 'clicked', label]);
// console.log('[tracked]: ' + category + ' ; clicked ; ' + label );
}
catch (err) {
console.log(err);
}
// pause to allow google script to run
var date = new Date();
var curDate = null;
do {
curDate = new Date();
} while(curDate-date < 300);
});
}
$(document).ready(function(){ analytics(); });
</script>
</body>
</html>